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ABSTRACT

Hoeffding's Lemma gives an integral representation of the covariance of

two random variables in terms of difference between their joint and marginal

probability functions, i.e.,

Cov(X,Y)-- -.{P(X>x, Y>y)-P(X>x)P(Y>y)}dxdy.

This identity has been found to be a useful tool in studying the dependence

structure of various random vectors.

A generalization of this result for more than 2 random variables is given.

This involves an integral representation of the multivariate joint cumulant.

Applications of this result include characterizations of independence. Rela-

tionships with various types of dependence are also given.

AMS 1970 Subject Classification: Primary 62H05; Secondary 62N05.

Key Words: Hoeffding's Lemma, joint cumulant, characterization of independence,
inequalities for characteristic functions, positive dependence,
association.
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1. Introduction

It is well known that if a random variable (rv) X has distribution function

(df) F(x) with finite expectation then

EX = I-F())d 0F W dx(1

The extension to high order moments is straightforward. That is, if E IXIn <_

EX -n[J Mx nl(1-F(,x))dx - J x n-lF(x)dx] (2)

W. Hoeffding (1940) gave a bivariate version of identity (1), which is

mentioned in Lehmann (1966). Let F X,Y (x,y), F X(x),F Y(y) denote the joint and mar-

ginal distributions of random vector (X,Y), where E IXY 1, EI XlI, EJY I are assumed

finite. Hoeffding's Lemma is

EXY -EXEY = Tf .Lo0 {F Xy(x~y) -F X(x)F Y(Y)}dxdy. (3)

Lehmann (1966) used this result to characterize independenceamong other

things,and Jogdeo (1968) extended Lehmann's bivariate characterization of inde-

pendence. Jogdeo obtained an extension of formula (3) which we now give. Let

(Y PY'Y )be a triplet independent of (X,!X 2 ',X3) and having the same distribu-

tion as (-X 1,X2,X3 ) then

E(X 1-YI )(X 2-Y2 Xx 3-Y 3

rrr ) uudu (4)
ff K '1 u2,u3)d 1d2

123M1 1-3 1331

{P(A 1 A 2 A 3) +P(A I)P(A 2A 3 -P(A 2)P(A 1 A 3) -P(A 3)MA 1 A 2)}, and A, =(X <U i

1i-,2,3, B, {X 1 2-u11 Jogdeo mentioned that a similar result holds for n >3.
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We give a different generalization of Hoeffding's Lemma. Notice that expression

(3) can be rewritten as

Cov(X,Y) f.. j Cov(X (-x),Xy(y))dxdy (5)

where XX~x W -1 if X > x, 0 otherwise and that the covariance is the second order

joint cumulant for the random vector (X,Y). In the following we extend the results

the rth order joint cumulant where r >3.

2. 1Main'results

Consider a random vector (X1 **~X r ) where EIX 1Ir<., i~l..r

Definitioni. The rth order joint cumulant of (X1,,,.,X r) denoted by cum(X ... 2Xr)

is defined by

cum(X ,...,Xr E -(-l) P 1 (P-1)! (E 11 X )...(E T1 X (6)

16 r e 1  JEV p

where summation extends over all partitions 0,90.V '*=,2,*'ro

It can be shown (see Brillinger195thtcmX,.Xr)isher cen

of theterm Mr ti .. t r n the aylorseries expansion of log E(exp tjXj.
ji1

Furtermre he flloingproperties are easy to check:

(i) cul(a 1 Xl,o... aX r) =al 9.. a r cum(X1"'r)

(ii) cum(X1, ...*X r) is symmetric in its arguments;

(iii) if any group of the X's are independent of the remaining X's then

cum(X1,...,X r 0;

(iv) f or the random variable (Y 1'Xl,...,Xr), cum(X 1+Y 1 X2'0.,Xr)=cum(X1,..,Xr)

+ cum(Y ,X2 9 o.*,Xr) ;

(v) for j.' constant, r> 2, cum(X 1+1 9 X 2,.,X) cum(X1, ...,qX r
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(vi) for (XI, ... ,Xr ), (YI'"" 'Yr ) independent

cum(X 1+Y 1 9,,,,Xr+Y) = cum(Xl,...,Xr ) +cum(Y 1 ,..,Yr);

(vii) cumXj = EX, cum(XXj) = Var X and cum(XiX) = cov(Xi X).

To represent certain moments by cumulants, we have the following useful identity.

Lemma 1. If EIXiIm <

EX...x - EX1  EX1 m 1" m

= . cum(Yk,kEv l)...cum(Xk-kE-v,) (7)

where E extends over all partitions (V,...,p),p= 1 ,... ,m-1, of {,... ,m}.

Proof: In the case of m= 2, p- m-i= 1 and (7) reduces to the well known

EX1 X2 - EXI EX2= cum(Xk,kE v I )= cov(XlX 2)

Notice that

EXI ."XXn mE

=EX x X KX -EXEXEx

EX .** XM-2 XM-1Xm 1 XI...E m-2 E m-l Xm

+ EX ... EX 2cov(X lXm). (8)

Introduce the new notation Y= Xi, i 1,...,m-2, YM- Xm- Xm By Theorem 2.3.2

in Brillinger (1975, p. 21) and induction we get (7).

Our main result is the following.h r
Theorem 1. For the random vector (Xl°x ) r> 1, if EIX i, < . i= 1,2,...r, then

1,r

where X (xi)= 1, if Xi> xi, 0 otherwise.
Xi
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To prove the theorem we need a lemma which is of some independent interest.

Lemma 2. If EIX 1 .. .XI < -, we have

EX r -1 N {Fx) r Mi
EX.. (-r {F(x) I .(X )F(X

r Jul

(ij' r r+ C( (i )(x )F(x'J . (-1) rI r,(x )ldx1 ,.. .,dx r (10)
i~j jiJul j

where F.(xi) = 1 if x,>0, 0 otherwise. Here x represents (Xl,...,Xil l,
-(il,..i k)1

X +3,...,xi 2. X2+1..X klx . x) Also F(x ) is the marginal

df of X(il 'h ik), We omit the subscripts for F for simplicity when there is no an

biguity, e.g. F(x ( )) is the marginal of (X2,...,Xr).

Proof: First, we have the identity

- Ixw -
,' X (e(xi) I(.xiXi )i iii

where I(_,xi (Xi) - I if X i<_xi, 0 otherwise. Then, by Fubini's theorem

r
EX ... X - E{ I [(Xl)- (Xl)]dxi

i-r1 r- E{j_..iI [e(xi) -I( ] (Xi) dXi'} d~

r"- " E { R [f(x )- (. ] (X ) dxl...dx I

-I xi r

fj*j {inl -~ II E(xk)F(x) + HI c(xk)F(xix)
"o " jul koj i<j ki,j

+ (-)r F(x)}dx ...dxr

which is just the right side of (10).

Remark 1. It is easy to see that (1) can be written as EX ( (x)- F(x))dx,

which is a special case of (10). Thus lemma 2 is an extension of (1).
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Remark 2. Using the identity X - _ .i i [(xi (-,xi(X i)]dxi

we can also obtain an extension of (2) i.e.

nl, n k k n 1 1 nk-l
EX1  " = (-1) nl J.. xk

k 
i){F(xl''Xk) -) =E(X )F(x(J)) + I E(xi)E(x )F(x(i )

j~l i - <j
k

+ _ kH c(xi)}dxl,..dxk  (12)
i=l

where ni> 1, n1+...+nk< r.

Remark 3. When the Xi's are nonnegative (12) reduces to

nI. n k nl-i n-I
E X, -- . n ....n xl .. Xk F(xl,.,.,xk)dxl ...dxk (1 .

0

where F(xl...xk) is the survival function P(X.> xi, i= l,,..,k). The bivariate case

of (13) was mentioned by Barlow and Proschan (1981, p. 135).

The proof of the theorem 1 involves routine algebra and the use of Fubini's

theorem and lemma 2. We have

Cum(Xl,,..,X ) = E(-I)P-I(p-I)!(E r[ X) (E I X)

P ': -- E(X1...X ) - E E( RT X.)E( Ri X )+...+(-l)r(r-l)! HI EX.
SjEV J j=l

(-1) r J...J{F(x) - + (x )F(x( x) + (i

jEl i<j

r
+.+(_,) r 11 E(x.)}dx .. dx

j=l Jr

n +n
- (-1) 2 .'.F(xj, jE vl)- c(xk)F(xj, j E vl\k)

-00 kEv I

4 - .~V
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n
+..(1 E: E(X ){F(x i , i E 0) E €(Xk) F(xi, i E j'2,k)

J6V 2 kEV2 k2

n
V 2

+...(-) I E(x i) }dx ... dx

JEV 2  i 1

+ ()r(x) - Fi(xi) ]dx I . dx

where nVi is the number of indices in vi, F(x., jE Vi) is the marginal of rv's

in vi, and Fi(x) is the marginal of X.. All terms with E(x i) factors cancel and

the quantities n j =2,...,p are all equal to r.

Thus,

cum(Xl...X) = (-i)r r.c. {F(x)- EF(xj, j 1 e )F(xi, iE v 2 )

r
+...+ (-I)r(r-1)! 11 Fi(xi)}dxl...dx

i=l r

(-1)r f.. c{E(-)P-(p-I)!F(xj, J l) . F(xj j dx ... dx

= (-f) r .cum(X ( X) x (xr x dxr
1 rr

= . ,..., X (xl ' - XX x  r ))dx l '. ' d x r .

The last equality follows upon using properties (i), (iii) and (iv) of the cumulant.

This completes the proof,

Remark 4. The result of Theorem 1 gives that

cum(X 1 9 ... ,xr) ; . .fcum(XXl( x1 ) ,. o o xx (xi))dx...dxr-

The integral can then be expressed in a variety of ways. A general form is

- r
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(._l)card B cum(Xx.i), iE A; 1 - Xx.(x i), iE B)

1 1

where Au B = {1,2,...,r}. We then have various combinations of the distribution and/

or survival function in the integrand. Some examples:

i) for A = , card B = r the integrand is

rr rr

(-1) r{F(x)- Z F(xj,jE V1 )F(xi, iE v 2 )+...+(-)r (r-l)! 11 Fi(x
i=l

ii) for B = 0 the integrand is

r
F(x) - z F(x , JEV1 )F(xiiEv2)+..(_-)r (r-1)! 11 Fi(xi).

i=l

3. Applications

In some sense, the cumulant is a measure of the independence of certain class

of rv's.

The following result was shown by Jogdeo (1968). Let FXIX 2,x3 (xl,x 2,x3)

belong to the family M(3) where M(3) denotes the class of trivariate distributions

such that there exists a choice of A and Ai, i=1,2,3 such that

3
P ( Xl X2A2x2, X3A3x3) A HI P(XiAix i ) (14)

i=l

for all xl,x 2 ,x 3 where the A, A. each denote one of the inequalities > or <.

Then Xi,X for all i # j are uncorrelated and EX1X2X3 = EX EX 2EX3 if and only if

the X.'s are mutually independent.1

Using Theorem 1 we get this conclusion directly. The "if" part is trivial.

Conversely since FE M(3) we know Fxxj (xix )E M(2) (M(n) can be defined similarly).

Since Xi and X are uncorrelated this implies the Xi's are pairwise independent

% % %
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by Hoeffding's Lemma. Thus using Remark 4, (9) becomes

E Xx 2X 3 - EXIEX2EX =

X00

+ff {P(X 1AIxlX 2A2x2 'X3A 3x3)- P(X1 Ax 1 )P(X2A2x2)P(X3A3x3) }dx 1dx2dx3 '

Now since FE M(3) the integrand will not change sign, so that EXIX2X3 = EX EX 2EX3

implies P(X1A1Xl,X2 A2x2,X3A3x3) = P(X1A1x1 )P(X2 2x2)P(X3A3x3) for all

x ,x2,x3 which means that the X. 's are independent.

The n-dimension extension is straightforward and is given below.

k
Theorem 2 If FXI '  (Xl,...,x n ) E M(n), then EX. ...X. = H EX. for all sub-

1''.n 'k j=l 'J
sets{i ,...,i k } of {,...,n} if and only if Xl, ..,Xn are independent.

Proof: F Xl...1Xn(Xl,... E M(n) means FX i l , . .. ,X i  (x. , ... x. ik) )E M(k) for

any subset (il,....,ik). By induction on n, using Theorem l, we obtain

n rn
EX ...X - TI EX + ... {P(XAxiv i- 1,...,n)- T P(X.A x )}dx ...dx .

n - i=l iii 1 n
j--o

n
The integrand will not change sign , so EX1.. X n= H EX. implies that the X. are

mutually independent.

Several authors have discussed dependence structures in which uncorrelatednessi

implies independence. Among them are Lehmann (1966), JC'gdeo (1968), Joag-dev (1983)a

Chhetry, D. et al (1985).

We now give a definition fron, Joag-dev (1983). Let. X= (XI .... ,Xn) be a

random vector, A be a subset of {1,...,n} and x = (Xl,...,x n ) a vector of constants.

Definition 2. Random vectors are said to be PUOD (positive upper orthant dependence)

if a) below holds, PLOD (positive lower orthant dependence) if b) below holds and

p.'.v.'
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.
POD (positive orthant dependent) if a) and b) below hold, where

n
a) P(X>x) > 1I P(x.>x i),

i=l 1

n
-p b) P(X< x) > 1 P(Xi <x).

1i-l

If the reverse inequalities between the probabilities in a) and b) hold the

three concepts are called NUOD, NLOD and NOD respectively.

Definition 3, A vector X is said to be SPOD (strongly positively orthant dependent)

if for every set of indices A and for all x the following three conditions hold:

c) P(X> x)> P(Xi> x i, iE A)P(x > xcj . Ac)
d) P(X< x)> P(Xi<xiA i A)P(X.<)xj E Ac

1 icA)

e) P(X> xi, i A, < E Ac)< P(X i> xi i A)P(X. < xj, E Ac).
1 J- J

The relationships among these definitions are as follows:

PLOD

p Association 4 SPOD - POD M(n). (15)

Since association,SPOD, POD, PLOD, PUOD are all subclasses of M(n), Theorem 2

generalizes some results in Lehmann (1966) and it gives us another proof of

Theorem 2 in Joag-Dev (1983) as well as some new characterizations of independence

for POD random variables. Corollary 1 is the result of Joag-Dev.

Corollary 1. Let XI,...,X n be SPOD and assume cov(X ,X) = 0 for all i # j. Then

X I .... ,X n are mutually independent.
n

Proof: Since Xl..k X SPOD implies (X .. .X n ) )E M(n) by Theorem 2 we need only
% kcheck EX ...X = U EX. for all subsets{il,...,i of {l,...,n}. When n= 2

1 ik j=l

In Definition 2 in Block et al (1981), POD is used for what is called PUOD in

this paper.

V
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SPOD is equivalent to PQD and uncorrelatedness implies X 1,X2 independent. By induc-

tion on n we may assume all subsets with (n-i) rv 's are mutually independent and

k

thus EX .* x = r[IEX, for all 1< k< n-i. Hence cum(Xk, kE V) = 0 whenever

I= ik n

card(v )< n-l. So we only need to check EX ..X R HEX .By Lemma 1, Theorem
p~ ~ n =1J*

1 and because of the independence of any (n-1) rv' s

n

EX1 ...X -H j 11EX

= E cum(Xkl kE ) .. .cum(Xk., kE V)P

= cum (X1,.. ,X)

n

-~= fjJ {PQX> x) I P(X > x )}d 1..d>0. (16)

Similarly

n
EX l*-x _j I EX

=E(-X 1)(-X2 )X 3 - . nX- E(-X 1)E(-X 2)EX 3 ... .EXn

cum(-X1,P-X2,X,-x2>X2 x3>x3

Px>x P-X X> X. PX > X)..X > x )} 
1 j 1' 2 2' 3 n n nn

-00

n

.0 - P(X1' <-X )P(X < -x ) ii P(X > x ) }dx1 .. dXn

- .0. (P(X < _Xj9 J- 1,2, X > x1, i- 3,...,n)

A0 - P(x < -x J, j- l,2)P(X i> Xi, i- 3 ... n }dx1  dxn

< 0. (17)

Ii<111 0 .11i 11 I"
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The last equality holds by the induction assumption of mutual independence and

the last inequality is due to SPOD. Combining (16) and (17) completes the proof.

Theorem 3. Let XI,X2,X3 be POD and assume Xi,X for all i # j are uncorrelated.

Then XI,X2,X 3 are mutually independent.

Proof: The following two summands are nonnegative since XIX2,X3 are POD. By

Lemma 1 we then have

3
[P(XI> x1, X2 > x 2, X3 > x3) - P(Xi< xi)]

i=l
3

+ [P(X< X1 , X2 x2 , X3<x 3) - H P(Xi<xi)]

cum(X l (x1), XX (x2,xx (x 3 )) + Z P(X i> x i)cov(XX (xjIx (xk))
1 2 3 ij#k i Xk

+ cum(l - X (x), I - x (x2) -x (x 3 ))+ P(X<xi)cov(Xx (x ),X(k
X I X 2 X 3 X i xk))

1 2 3 i#j#k

= [ cov(Xx (xi), Xx (xj))"

Since Xi,X. POD and cov(XX) = 0 we obtain cov(X (x i)X x.)) = 0. Thus
i J3 i' j

P(Xi> xi, i= 1,2,3) - H P(X i,> x = 0, i.e. X1,X2,X 3 are mutually independent.
i=1

Remark 5. For three rv's XX2,X3 the mixed positive dependence defined in

Chhetry, et. al (1985) implies POD but the converse is not true as shown by an

example in Joag-dev (1983). Notice that since the mixed positive dependence implies

POD in Corollary l,the SPOD can be relaxed to this mixed condition.

Theorem 4. Assume n = 2Z+l is an odd positive integer and X I  X are POD. Then

if E(X ... ) - EX • X where 2< k< 2t for any subset {il... of

{1,...,29+l} it follows that X1 ... Xn are mutually independent.
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Proof: By Theorem 2, we need only check EX 1-X K EX .-.EX n. On the one hand

EX... X n EX, ... EX n=cum(X1*

f ...J {P(X i> XV i= 1,...,n) - nP(X > x )}dx 1 ...dx > 0

On the other hand

EX...**X-EX .**EX

(-1) 2Z-Il {E(-X 1 ).(-X) n E(-X I) ... E(-X n}

=(-l)~ cui+1t.- n

2Z+1 n
(-l)0-0f {(X < X Vi1,l..,n) - fl P(X.< -x.j)}dx 1 .dx n<0.

Remark 6. For n- 4 we constructin Example 1 below, POD rv's such that any three

of X 's are independent but the X 's are not mutually independent. This shows

that the conditions of Theorem 4 are reasonable. In Example 2, we show that for

POD rv's cov(Xi K ) - 0 is not enough to give mutual independence when 2Z+1 >3.

Example 1. Let X1, ..., 9X have the distribution given below. It's easy to check

that for 1JOki%' 9k are mutually independent and that X .** K are POD.

X1 X2 X3 X4 Pr

I 1 1 1 1/8

1 0 0 /

1 010 0 1/8

010 1 0 1/8

O1 1 01 1/8

010 0 1 1/8

O 0 1 1 1/8

0 0 0 0 1/8

MOM 1-1 11 ,1
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4
11 1

Since P(X >2, i= ,..o,4)- Pi =-- >1 X1 are not mutually independent.

1 2 ~~~i=l 1 2 6>01..X
Notice also that

P(X1 <x 1 , X2 <x 2 , X3 > x 3 , X4 > x4 )

- P(XI <xi 2 <x 2 )P(X 3 > x3 ,X 4 > x4 )

1 21' < 1 x2x 2342
= cum(l - X Xl(x) 1 - Xx 2 ) , X xl(x I1 ) , X x2(X 2)

= cum(x x(x), i i...,4)

4

= P(Xi > x., i= 1,...,4) - 11 P(Xi >x )
i=l

> 0,

so these rv's are not SPOD.

Example 2. Let X ,...,X have the distribution given below.5

X1  X2  X X X Pr

1 1 1 1 1 1/1

1 1 0 0 i1/1
1 0 1 0 1 1/16
0 1 1 0 1 1/16

1 0 0 1 1 1/16
0 1 0 1 1 1/16
0 0 1 1 1 1/16
0 0 0 0 1 1/16
1 1 1 1 0 1/16
1 1 0 0 0 1/16
1 0 1 0 0 1/16
0 1 1 0 0 1/16
1 0 0 1 0 1/16
0 1 0 1 0 1/16
0 0 1 1 0 1/16
0 0 0 0 0 1/16

It is easy to check that this is PUOD and PLOD, thus it is POD. However EX iXj = 4/16 and

EX1 00/ for all ij.

SIn this example we can use Theorem 3 to prove that any XiXj,Xk are mutually

independent since subsets of POD rv's are still POD.|1
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Newmann and Wright (1981), using an inequality for the ch.f.'s of rv's

X1i*** ,X m, provided another proof for the characterization of the independen~ee

of associated rvs This is Theorem 1 of Newmann et al (1981). These authors

*proved that if X1 .. SX mare associated with finite variance, joint and marginal

ch.f.'s p(rl...,r )and (r )then

1m m1

1 (r'.. ) - H i ~(r~)- i Ir i jr klcov(X ,Xk), (18)
Ju jok -

To extend this inequality we need the following lemma.

V1 Lemma 3. For the rv (X,.,X m) with EIX Im o

cum(exp(ir 1X 1),...,exp(ir))

m

= J...Jim 1 -. Ir exr i rx )cum (X X (x 1) X (x m ())dx 1 -*dxm (19)

where r1,...,r are real numbers and X X (x) 1 when X > X~ and 0 otherwise.

Proof: This proof of result is similar to Lemma 2. Use the identity

exp(ir kXk) -1 E i r rkexp(irkXk) (E (xk) -,(-,x] (X~k))dxk.

We obtain

= u(exp(irkX,) -1,=,...,m)

M CM~ep~r k )- 1, k =1. yM

rr m p
=-IP -) !.Jm19 ., 11[ exp(i r k~k -1)]E i ~Xk]d~

ccI Z-1 k~v

m
-Jf..Iimrl,.,r exp(i r i x )i x 1 1-~~p'x nmE x)}x .

- flefmrolt ep~iI x Uu(XX(x )e..,X (xm))dxq,.,dx

-0 n Ju J J 1 1 m. m
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Using Lemma 3 we can obtain a result paralle'l to (18) for certain classes of

rv~s

Theorem 4. If X1,..X m are rv's such that EIX~ i < ,, j - 1,... ,m and cumo( X (x 1),

*.. x xk)) has the same sign for all subsetsfil,..i I of {l..ml and1
Xikk

all x1, ... Ix k* Then

m m
1 (rl--- - TI R (r i)j< 11 Ir iI.EX 1 -.X- EX 1 -.EXI. (20)

m J=ljl

Here cmr 1 .. ,) and %(r) are the joint and marginal ch.f's of Xl.'m

Proof: From the fact that the cum(X (X 1),...,XX (x n)) have the same sign, and from

Lemma 1, Lemma 3 and Theorem 1 we have

m m m
J (ri..., TI H (r )I -IE 11 exp(ir kXk) - RI E exp(irkk)1

j=l k=1 k-l

E 1 cum(exp ir X j \j 1 ).cum(exp ir X , iEv )p

Ij.. ir 1 ***r mexp(i r rx j:{Ecum(x X (xj) iEV 1)...cum(x X(x~) jEV )}

dx 1.. .dxl

<Ir 11..Ir i Vf ..fl cum(X (x ), iEV I) ... cum(X X (xl) jEV p)Idxl*dx n

m
Sil Irj ki...J cum(X X (x ),iE v 1 ) ... cum(X (xj)JiEvp )dx l***dx mI

= 1r1I...Ijr I 1E cum(X1iEv1)... cum(Xj1,EV)I

=Irli ...rIIEX, ... X m-EX, ... EX mI.

Remark 7. In Example 3 below we define rv's which are uncorrelated but not mutually

independent. By Corollary 1 they cannot be associated so that Theorem 1 of Newman

and Wright (1981) does not apply. However Theorem 4 gives an upper

I~ 1 1111113 1 A ,J W -
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bound for the difference of ch.f's, since it is easy to check cum(Xxi (xi),xx.) =0'

i J,and cum(XX (x1), Xx2 (x2 ),xx 3 (x 3 )> 0 for all x1 ,x 2 ,x 3 .*

Example 3. Consider the rv's Xl,X2,X3 with distribution given below.

XI  X2 X3  Pr

1 1 1 1/4

1 0 0 1/4

0 1 0 1/4

O -0 1 1/4

These are PUOD but not POD.

For nonnegative rv's we can go further.

*Theorem 5. If the rv's XI,..,Xm are nonnegative (nonpositive) and PUOD (PLOD)

with finite mth moments then

m
(rl,...,r m) -=i - %(r )I < IrlI ... Irm IEX. Xm - EX,...EXmI (22)

.11

Proof: We prove the PUOD case only. Using Lemma 1, Lemma 3 and Remark 3P

m m m
I r 1 ,...r - .(r )I = JE exp(i I r.X.) - n E exp(ir X )I

m J=l J=l j J Jl

J imrl,...,r exp(i rxij)[P(x .. ,xm) 1F(XI) .,Fm(Xm) ]dx1 . dxml0 J=1 [(l

= Irlr...IrI Ij (x(x,...,n) -P ((Xl)...F(x)IdXl...dx m

M r l ... Irm IEX...X - EX,...EXm1. (23)

Corollary 2. Under the conditions of Theorem 5, if EXI. .Xn = EX ''EX m then

XI , . . . X are independent.

%
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4. Cumulants and Dependence

Cumulants provide us with useful measures of the joint statistical dependence

of random variables. However, the relationships with positive and negative dependence

are not similar to those in the bivariate (covariance) case. We give some examples

to illustrate the relationship between the sign of the cumulant and dependence in

the trivariate case.

Remark 8. By property (iii) of cumulants if any group of X's is independent of the

remaining X's then cum(Xl,.. .,X r) = 0. The converse is true for normal distributions

when r =2 but not for r> 2. For the trivariate normal, we can have cum(XI,X2 ,X3) = 0

where X1 ,X2,X3 are not necessarily independent.

Remark 9. Assume EXi > 0 for i= 1,2,3 and cov(.Xi,X)> 0 for i,j = 1,2,3 (or the even

stronger conditions cov(XX (X )x (x ))> 0 and cum(XI,X 2,X3) > 0. These do notxi iX j -

imply PUOD as is shown in the following example.

Example 4. Let X1 ,X2 ,X3 take the values 0, +1 with : P(XI= x1 , X2 = x2, X3 = x3,

x 1 x2 X3 T 0) = 0; P(X1 = X2 = X3 = 0) = 0; P(Xi= 0, X j= xj, Xk= xk, x jxk> 0) =.9,

i,j,k = 1,2,3, xj= xk = 1 or xj = x k = -1; and P(XI= x1 , x 2 , X = for
xj 2C 2X 2 ' X3  x3  36

the remaining cases. It is easy to check that EXi = EX X 2X 3  0, EX.iX> 0, and

cum(Xl,X2 ,X 3) = 0 but

P(XI> 0, X 2 > 0, X 3 > 0) - P(XI> 0)P(X 2 > O)P(X3 > 0) = - 11 3
1 2 31 2 3(T6) < 0,

Remark 10, Let EXi 0 and assume (X1 ,X2,X3 ) PUOD. This does not imply

cum(Xi,X 2,X 3) > 0 as is shown in Example 5.

Example 5. Let (X1 ,X2 ,X3 ) have distribution given below, It is easy to check

that (X1 ,X2,X 3) is PUOD and that EX = 0, but cum(X1 ,X 2,X3) = -0.15< 0.

ii

WK~~--- .
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X 1X 2X 3 Pr

1 1 1 0.35

1 1 -1 0.05

1 -1 1 0.05

-1 1 1 0.05

0 0 -1 0.05

-1 0 0 0.05

0 -1 0 0.05

-1 -1 -1 0.35

Remark 11. Let (X1,X 2 X 3  be associated. It need not be true that cum(XX 2 X 3) 0

as is shown in Example 6.

Example 6. Assume (X1,X 2 9 X3) are binary rv's with distribution

P(X1 = X 2= X 3= 0) = 0.3; P(X 1 .X 1 9 X2 =x 2 9 X3 = x 3) 0.1 for all other

{X 1 ,X 2 9,x3 }E {0,l} 3

Checking all binary nondecreasing functions r (X1,X 2 'X3 ) and AX12X3)we have

cov(1LA)> 0. Thus (X1,X 2 9,X3) are associated but cum(X1 ,X 2 X 3) = -0.012< 0.

Remark 12. If (X,Y) are binary and cov(X,Y)> 0 then (X,Y) is associated as was

shown in Barlow and Proschan (1981). However if (XX 2 9,X3 )are binary, then

cov(Xi9Xj) > 0, i,j= 1,2,3 and cum(X,,X2 ',X3) > 0 do not imply (X1,X 2 X 3) associated

as is seen in Example 7.

Example 7. Assume (X1,X 2 X 3) are binary rv's with the distribution below. Then

cov(Xi Aj) 1->0adcm() = 1L > 0. However for the increasing functions
0 and c80( 1,X2,X3  135

max(X1 ,X 2  and max (X1,X 3)

cov(max(X1,lx) max(X1 ,x3) 0 -

2 3 90

so (XX 2 9,X3) are not associated.
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x X2 x 3  Pr

r0 0 0 0

0 0 1 1/30

0 1 0 1/30

1 0 0 1/30

1 1 0 1/10

1 0 1 1/10

0 1 1 1/10

1 1 1 6/10

If we add some restrictions, some results can be obtained. We give these

below and omit the easy proofs.

Proposition 1. If cov(Xi,X) 0, for i,j = 1,2,3 then (Xl,X 2,X3) PUOD implies

cum(Xl,X 2 ,X3)> 0 and (XI,X 2,X3) PLOD implies cum(X1,X2 ,X3)<_0.

Remark 13. Notice that under the above assumptions we havethe peculiar situation

that PUOD <> NLOD and PLOD <-> NUOD.

Proposition 2. Let (XI,X2,X3) be a binary trivariate rv. If cov(Xi,X )> 0,

cum(Xi,X 2,X3) > 0, and additionally condition (M) below holds, then (X1,X2,X3) is

associated for i,j,k - 1,2,3.

cov(XiA XjXk, Xj .Lk) >0 (M)

cov(xiJLx j , xiJLxk) > o

where

IeXe i = 1 - (l-Xi) (l-Xj) = max(XiXj)

To prove Proposition 2 we need to check for all binary increasing functions F

and A that cov(r(XI,X2,X3)A(XI,X 2 ,X3))>0. We leave this to the reader.

Although cum(Xl,X 2 ,X3 )>_0 does not imply PUOD we introduce a new condition

which does imply positive dependence.

.. .. ' ' , I' - . .. WlT ' "~ " '.,
"

' ,:%W .", l3 .,, ',"WF
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Definition 4.The r.v. (X1,X 2,X3) is said to be positive upper indicator cumulant

dependence (PUCD) if for all XlX2x 3

F(xl,x 2 ,x 3)- F1 (x1 )F 2 (x2 )F 3 (x 3) Z Fi(xi)cov(XX (x )Xxk (xk))>
ij~i#j#k 3 k'~_0

It is easy to see that PUCD is equivalent to

coV(Xx i ) , x--(x ))> 0 for all i,j and cum(x (x), Xx3) , XxX) ) >0.

The relationships between PUCD and other positive dependence concepts are as

follows:

PUCD => cum(X 1 ,X 2 ,X 3 ) >0

1!, (24)
POD => PUOD => cov(Xi X )> 0

and no other implications hold. Example 5 shows that PUOD #> PUCD, Example 6

'S shows that POD #> PUCD, Example 3 shows that PUCD 0> POD and Example 8 below shows

that cum(Xl,X 2 ,X3) >0 #> PUCD.

Example 8. Let (X1 ,X 2 ,X 3 ) be the r.v. with survival function

F(XlX2,X3) = e-XIm ax(xl 'x2,x3) , xi>0, X> O.

Then cum(X1X X'- > 0 but X1,XX are not PUCD. Let xlx 2= 3 = - ln 4/3,

then

" 21
l'x2'3 - Fl (xl)F 2 (x 2 )F 3 (x 3 ) 6 21

but
.5

SFi(xi)cov(Xx (xj)X(Xk)) = (x 27

m

By Theorem 4 if (XI,...,X n) is PUCD, then EX .X m - EX implies mutually
J=l

independence. The definition of PUCD can be generalized to lower positive and

negative dependence concepts also.

Ap 0 1
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